Meet User’s Service Requirements in Smart Cities Using Recurrent Neural Networks and Optimization Algorithm
نویسندگان
چکیده
Despite significant advancements in Internet of Things (IoT)-based smart cities, service discovery and composition continue to pose challenges. Current methodologies face limitations optimizing Quality Service (QoS) diverse network conditions, thus creating a critical research gap. This study presents an original innovative solution this issue by introducing novel three-layered Recurrent Neural Network (RNN) algorithm. Aimed at QoS the context IoT discovery, our method incorporates user requirements into its evaluation matrix. It also integrates Long Short-Term Memory (LSTM) networks unique Black Widow Optimization (BWO) algorithm, collectively facilitating selection optimal services for specific tasks. approach allows RNN algorithm identify top-K based on under varying conditions. Our methodology’s novelty lies implementing LSTM hidden layer employing backpropagation through time (BPTT) parameter updates, which enables capture temporal patterns intricate relationships between devices services. Further, we use BWO simulates behavior black widow spiders, find combination meet system requirements. factors both attractive repulsive forces isolate best candidate solutions. In comparison with existing methods, shows superior performance terms latency, availability, reliability. Thus, it provides efficient effective IoT-based bridging gap current research.
منابع مشابه
fault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Smart Cities Applications and Requirements
Smart Cities gained importance as a means of making ICT enabled services and applications available to the citizens, companies and authorities that are part of a city's system. It aims at increasing citizens' quality of life, and improving the efficiency and quality of the services provided by governing entities and businesses. This perspective requires an integrated vision of a city and of its...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling
Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...
متن کاملWhen Smart Cities meet Big Data
Sharing information is a key enabler in the transition of a city becoming smart. Information, generated by the ICT backbone of a city, and maintained by distinct public and private entities, comes with processing challenges that must be addressed in order to increase citizens’ quality of life and make their cities sustainable. In CRISALIS and SysSec, we investigate such challenges from a securi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Internet of Things Journal
سال: 2023
ISSN: ['2372-2541', '2327-4662']
DOI: https://doi.org/10.1109/jiot.2023.3303188